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THE CURVATURE OF HOMOGENEOUS SIEGEL
DOMAINS

J. E. D’ATRI

1. Introduction

Our principal goal is to give fairly general sufficient conditions to guaran-
tee that a homogeneous Siegel domain with the Bergman metric has some
positive sectional curvatures. Examples have been found by K. H. Look and
Hsu-1-Chau [4] and by S. Vagi (private communication) but our method,
using j-algebras, appears to be different. We would like to thank J. Dorfmeis-
ter, R. Goodman, H. Rossi, S. Vagi, and E. Wilson for various helpful
communications.

Throughout this paper, all vector spaces, algebras, etc., are finite dimen-
sional. In this section, we give definitions and quote some of the fundamental
results of Gindikin, Pjateckii-Sapiro, and Vinberg [2], [6], [9]. Additional
references are [3], [5], [7], and [8].

By a Siegel domain, we mean a set D = D(Q, F) = {(z,w) € C" X C™:
Imz — F(w, w) € )} where £ is an open convex cone (containing no lines)
in R” and F: C" X C™ — C" is 2-Hermitian. We allow the possibility m = 0
so as to formally include the Siegel domains of type /. We consider D as a
Riemannian manifold with respect to the Bergman metric which we denote
by {, >. Let G be the group of all biholomorphic transformations of D onto
D (every such transformation is also an isometry), and G, the subgroup of
complex affine automorphisms of C™*” which take D onto D. Then G is
transitive if and only if G, is transitive, and in that case D is said to be
homogeneous. Each homogeneous Siegel domain is biholomorphically equiv-
alent (hence isometric) to a homogeneous bounded domain, and conversely.
Suppose S C G is a simply transitive Lie subgroup. Fixing a point p € D, we
can identify .S with D by g — g(p). The pull back of the Bergman metric then
becomes a left invariant Riemanian metric, also denoted <, >, on S. The
almost complex structure of D at p then pulls back to a vector space
endomorphism j on the Lie algebra 5.
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Now start with a real Lie algebra 8, an endomorphism j of the vector space
8 and a linear form  on 8.

Definition 1. The triple (8, j, w) is called a normal j-algebra if for all X,
Yes

(1.1) j is an almost complex structure, i.e., j/2X = -X,

(1.2) [X, Y]+ jUX, Y] + JIX,j¥] = [jX, Y],

(1.3) «ljX,jY] = wlX, Y],

(14) o[jX, X] > O0for X # 0,

(1.5) % is solvable, and the adjoint representation has only real eigenvalues.

The relation between normal j-algebras and homogeneous Siegel domains
is given in the following,

Theorem 1. Let D be a homogeneous Siegel domain. Then simply transitive
split-solvable Lie subgroups S C G, exist, and for each such S and pointp € D
the Lie algebra 8 of S has the structure of a normal j-algebra (8, j, w), where j is
the pull back of the almost complex structure of D at p, and the pull back of the
Bergman metric satisfies w[jX, Y] = {X, Y ). Further, up to isomorphism, all
normal j-algebras arise in this way. Note however that two j-algebras are
considered isomorphic if they are connected by an algebra isomorphism which
preserves the almost complex structure but need not preserve the form (see
Theorem 4).

2. Structure of normal j-algebras

Fix a normal j-algebra (8, j, w) with positive definite j-invariant inner
product (X, Y> = w[jX, Y]. The following is part of the basic structure
theorem of Pjateckii-Sapiro [6], although (2.5) was stated most explicitly by
Rossi and Vergne {7], {8].

Theorem 2. Let n = [3, 8] and let a be the orthogonal complement of n in 3.
Then each of the following statements is true.

(2.1) a is a commutative subalgebra, and n can be represented as the direct
sum of the root spaces n, = {X € n: [H, X]| = a(H)X, H € a} of the adjoint
action of a on n. ,

(2.2) Letey, - - -, eg be the roots whose root spaces are mapped into a by j.
Then R = dim a and, with proper labelling, all roots are of the form e, &,
1 <k <R; (e, &), 1 <m <n < R (although not all these need be roots)

2Q3) IfX €n Y € ni, are nonzero, then[X, Y] # 0.

1

Z2(&n— &)
24) If X € Nl oy Y €n, are nonzero, then {X, Y] # 0.
(@:3) Jnie = Mgy ey = M —er

We will need to derive some minor corollaries from this theorem (some of
which can in fact be found imbedded in its proof). First, for each linear
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functional « on q, let H, € a be defined by (H,, H) = a(H), H € a. Also
observe [n,, ng] C 1,4, and (2.2) therefore forces many brackets to vanish.
For example, = n, is abelian for this reason. Next, each n, is one-dimen-
sional, and we will arbitrarily fix nonzero elements X, € n, which then gives

a basis {jX;: 1 £ k < R} of a. If k + m, we have, by (2.1) and (1.2),
0 =[jXe, X, ] =[ X X,] + [ X X,] + J[ Xioo X, ]
= j{e.(/X)X,, — &(iX,) X, }-
Since X, and X,, are linearly independent, this gives
(1) g(/m, ) =0 if k #=m.
However,
0 # Xy, Xi) = @[ Xy, X | = (X )(X,),

SO
(2) & (Jjn, ) # 0.
In particular, the root ¢, - - - , &g are linearly independent. Now from (1), we

have (X, X,.> = w[jX,, X,,] = 0if k #m, so the root spaces n,, - -

.
> Vg

are pairwise orthogonal. Now using the orthogonality of the basis {jX,:

1 <k <R}, weget »
€) X Xk>He,‘ = & (J X )Xy
4) (H,H,)=0ifk+#*m.
Now fix X € nl, _,,. Using (2.2) and (1.2) gives
[Xo X1 = [ X X] = J[ X X ] + [ X, X ]
=~ (3(em — eJUXIVX + (5(e, + £)UX )X
e (JX, )X

Thus

e.(jX,)w0(iX) = &[ X,, X| = w[ X, jX] = (3(&, + £)(GX,))0(iX).

From (1) and (2), this gives
(5) (i, +ey) = 0form <n.
Again, by (2.2),
0 = o[ jX, X,] = <X, X,> = @[ jX,. X] = (3(e, — £)(iX,) (X)),
which proves
(6) w(nie, —ey) = 0form <n.
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Now for each root a # g, let & be the root for which jn, C n;. For such a
and any root 8, (2.2), (5), (6) show that
<na’ n,B> = w[jna’ nﬁ] c “’(na+ﬁ) = O’
unless & + f is a root of the form g, or 3¢ It is easy to check that the only
distinct roots a, B (not both of the form ¢,) which are exceptions are a = %e,,,

B =1(e, — ¢, but then we need only reverse the roles of a and 8. Thus we
have the following corollary:

7 The root spaces are all pairwise orthogonal.
Finally we need some more technical results. Choose any elements

Y, en,, Y, €nl,, ZEn

€’ (em—8,)*

Then (1.2) can be written as

(Y Yol +[ Yo d¥a] = [ Yo Y,] = i[5 Y0 i Y],
where the left-hand side is in ni, ,,,, while the right-hand side is in ni, .
Thus each side vanishes, and we have [;Y,,, Y,] = —[Y,,, jY,] or equivalently,
(®) (ad 1) ° jlni, = - (adjY)ns, .
Similarly, (1.2) and (2.1) give

0 =[j¥,JZ] = j[ YmiZ] =[ Y, Z] + i[i¥ Z).
or equivalently,

©) (ad ¥, )Iniqe, oy =J © (ad ¥, )

3(&m— &) (&n— &)
Thus
(10) (ad Y,)(ad jY,)nt(, —op = (ad ¥,) oj o (ad ¥,)|nt(, _oy
= —(adjY,)(ad Y,)Inie, e,
and so _
(11) (ad Yn)(adjyn)|n5'(e,,.—e,,) =3 ad[ Yn’an]|n%(e,,,—e,,)‘

Now (Y, Y,,> = «[jY,, Y,] which together with (2.4) implies:
(12) If Y, # 0, then (ad Y,)(ad jY,)|ni(, ., is nonsingular.

1 1 1 . .
Lemma 1. Suppose 3¢, 3¢, 3(&, — &,) are roots with dimny, _ = 1.
Choose any nonzero Y € ni,,andlet = ad Y[ni, ., ¢ =ad Y|ni, sowe

have

® ¢
e —e) "> e, > (e, +e0)-

2
Then (Im ¢, Ker > 7= 0.
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Proof. Let ¢ = adjY|ny, _., and suppose <Im ¢, Ker ¢ = 0. Now ¢ is
injective by (2.3) so dim Im ¢ = 1 which in particular shows ¢ # 0. Then
dim Ml eoy = 1 implies 1 = dim Im ¢ = dim ni, - dim ker § so ni, =
Im ¢ + Ker ¢ (orthogonal direct sum). Thus j Im ¢ C Ker . But (9) shows
that j Im ¢ = Im ¢ so 0 = yY¢. This contradicts (12).

3. Results on curvature
S will be a connected Lie group whose Lie algebra 8 is a normal j-algebra.
Thus 8 has the canonical inner product <X, Y ) = «[jX, Y], and S has the
induced left invariant metric. The Levi-Civita connection V is computed by
X, Y, Z es.
Note that V, becomes a skew symmetric linear transformation on 8, and that
VyY — V., X = [X, Y]. We will constantly use the results of §2, especially
(2.2), (4), and (7). An easy application of these gives
(14) Vg=0H Eaq,
(15) V,Y=(Y,Y)H, forY €n,.
In computing sectional curvatures, we use
(16) <R(Y,Z)Z,Y) =<V, Y,VZ> +<{V,Z,V,Y) —(Vy,51Z, Y.
ForH € a,Z € n,, we find
(R(H,Z)Z, HY = <Viuz\Z, H) = ~a(HXV,Z, H) = -a(H)XZ, Z),
which shows there are always plane sections with negative curvature. Now in
contrast, we can state our main result.
Theorem 3. Suppose 8 is a normal j-algebra, and there exist roots ie,, %e,,,
3(6n — &) with dim n1, _
on S has plane sections with positive curvature.

Proof. By Lemma 1, there exist nonzero elements Y € ni, Z € ni,,
Ve ni, . such that

[¥,Z2]=0,<[Y,¥],Z)> 0.

= 1. Then the corresponding left invariant metric

Then we compute
(VyY,V,Z) =(Y,Y)Z, Z){H1,,Hi, ) =0,
(VyZ,V,Y) =(VyZ, VyZ) = |V, ZP,
(VyZ, V) =3[V, Y], Z> #0.
But then {R(Y, Z)Z,Y) > 0.
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We conclude this section with some results pertaining to the freedom of
choice for the form w in a j-algebra. First, note that for H € a, X € n,, (14)
implies that

R(X,H)H = iy H = «(H)VyH

= a(H){VyX +[X, H]} = -a(H)*X,

while
R(H',H)H =0for H' € a.
Thus we can compute the Ricci tensor by
Ric(H, H) = -3, a(H)* dim n,.

In particular
Ric(H,, H,) = —(H,, Hek>2{1 + 5 dimny,
(17)

l .
+1 > dim n%(ekﬂm)}.
mvk

However by (3) and the formula above (2),

& (jX,)
‘*’(Xk) ’

(18) (H, H,)> =

which is independent of choice of X, but does depend on w. Remembering
that the Bergman metric on a homogeneous domain is always Einstein and in
fact satisfies Ric = ~{, >, we have

Theorem 4. Suppose 8 is a normal j-algebra. If the left invariant metric on
S corresponding to w is Einstein, then

&(JX,)

1+ dimn, +31 dim ni, 4. }
w(Xk) { 4 1m n & 2 2 2 (e +&,)

1]

2 m¥k

is independent of k =1, - -, R. Moreover, if the metric is the Bergman
metric, the above expression is 1.

Example 1. In order to present concrete Siegel domains which fall
under Theorem 3, we give an example, the details of whose structure are
given by Murakami [5, pp. 76-95]. Here m, ¢ are positive integers, n =
1(m + g)(m + g + 1), R" is identified with the space of symmetric (m + g)-
square real matrices, C" is the complexification of R” identified with the
corresponding space of complex matrices, £ is the cone of positive definite
matrices in R”, C™ is identified with the space of m by 1 column matrices, and
F: C" X C" — C" is the Q-Hermitian map defined by
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%(ww + w'w) 0)

Fow ') = ( 0 0

This gives a homogeneous Siegel domain D — C™*". As usual, the Lie
algebra g, of the affine group of D has the gradation (Murakami’s indexing)

3, =0,P0.1Dg,

where g, is the Lie algebra of the group of linear transformations preserving
D. After some identifications, we have [5, p. 81]

G = {(A,B):A - (“

0 IZ),B=a+ ifI,, where a is m X m real,

bism X greal, cis g X greal, § ER}.

Let p be the pomt (il 0) in D. Then the isotropy subalgebra of g, at p is

m+q’

= {(4, B) € g, a, c are skew symmetric, b = 0}.

Define the subalgebra 5 of g, by 8 = g_, ® g_1® 5, where
= {(4, B) € gy 4 is upper triangular, § = 0}.

Let S be the analytic subgroup of G, corresponding to 8. Then S is solvable
and simply transitive on D, so 8 is a normal j-algebra (Theorem 1). An
abelian complement to n = [8, 8], of dimension m + g, is

a = {(A4, B) € 8,: 4 is diagonal}.

For (A, B) € a, A = diag(d,, - - - , d,,1,); let (4, B) = 2d,. Then the roots
of the adjoint action of a on n are precisely ¢, 1 <k <m + g; zsk,
I<k<m ,2(8 +g)l<j<k<m+ gand

2 ifa =%£k,
dim n, = . )
1 ifa#3¢.

To specify the root spaces precisely, introduce the following notation:

E, is the m + g square matrix with (E,),, = §,8,,.
Xiw» 1 <j <k <m + g, is the element of g, tangent to the one-parameter
group (z, w)—>(z + H(Ey + E),w), z€C',weC"

Y, Y5 1 <j < m, are independent elements of the plane in g, tangent to
all the one—parameter groups (z, w) — (z + 2iF(w, tb) + iF(1b, th), w + tb),
where b € C” is 0 in all except the jth entry.

Zy, 1 < j<k <m+ gq,is the element (4, B) of 3, with 4 = E,.
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Then we find

Mg+ey) = RXy, 1 <j<k<m+yq,
n%ek=RYk+RY,;, 1<k <m,
“%(ej_ek)=Rij, 1<j<k <m+ g,

and the root spaces n,, | < k < m + g, are precisely those mapped into a by
the almost complex structure map.

Finally, one observes by [1, Prop. 6.6 (see also the following Remark)], that
the root space structure with respect to the orthogonal complement of n in 3§
agrees with this one up to an automorphism of 3. Alternatively, one can show
a is actually the orthogonal complement by explicitly computing the Bergman
metric at p by [5, Lemma 8.2] and by explicitly realizing the map from 3 to
the tangent space of D at p.

Remark. Using the results of §2, it is easy to see that, in the terminology
of Azencott-Wilson [1], every j-algebra is an NC algebra, and the canonical
inner product is admissible. This fact is already known, for example by
Azencott and Wilson, but does not seem to be noted in the literature. On the
one hand, this says that the Azencott-Wilson theory is no help in deciding
which homogeneous Siegel domains have nonpositive sectional curvatures in
the Bergman metric. On the other hand, it says that if S is a connected simply
transitive Lie group of holomorphic transformations of the Siegel domain D,
then D has S-invariant Riemannian metrics with nonpositive sectional curva-
tures. These metrics can be described quite explicitly using the structure of
the j-algebra 8 and the construction of 1, pp. 355-357]. One forms a new
inner product (, ), on 8 such that (g, n), = 0, (n, n), = n*(n, n) and, after
canonical transference to a*, (a, B8), = (a, 8), > 0 for all roots a, S8 (possible
because all roots are positive on the element Hy = Z(ke (jX,)) jX,). This
gives a left invariant Riemannian metric on S (hence an S-invariant metric on
D after suitable identification) which has nonpositive sectional curvature for
sufficiently large n. However such metrics are unlikely to be invariant under
the full group of holomorphic, or even affine transformations of D (comput-
ing the full isometry group would be an interesting problem).

Example 2. We present another example, which is actually the original 8§
(real)-dimensional example of Pjateckii-Sapiro. Take a real vector space 3
with an almost complex structure j. In §, fix a 2 (real)-dimensional j-invariant
subspace Z and a basis jr,, jr,, 1, 75, X, jx of a vector space complement of Z.
Define the bracket product so that the only nonzero terms involving basis
elements or elements of Z satisfy (see [6, pp. 63—64])
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[jrls r]] = r17 [jrb x] = %x! [jrlij] = %jx,
[Jri> 2] =1z forz € Z,

[Jry x] = 3%, [Jrajx] =3ix, [jrar] =r

_[r2, x] = jx, [x,jx] =-r, [z, z’] E€Rr, forz,z’ € Z.

We want to define w to make (3, j, w) a normal j-algebra. From the bracket
relations and (1.3), we see w must vanish on x, jx, and Z, and the values of «
on jr,, jr, are irrelevant for computing (X, Y) = «[;jX, Y]. Multiplying « by
a constant just does the same for the induced left invariant metric on the
corresponding Lie group S. We can then define w so that w(ry) = 1, w(ry) = ¢
> 0, and w vanishes on Z + span{ jr,, jr,, x, jx}. Then we find that jr,, jr,, r,,
ry, X, jx are pairwise orthogonal and orthogonal to Z, {, ) isj invariant, and

Crprp =<£x,x> =1, {rp,r) =1, v
[z, z’] = (z,jz'>r, forz,z’ € Z,

In this example, note that n = Z + span{r,, r,, x, jx}, a = span{jr,, jr,},
&(ry) = 8, (k, m = 1, 2). Further, n, = Rr,n, =R, ni, = Z, n1, =0,
Nie, ey = RX, nie oy = Rjx. In particular, the hypothesis of Theorem 3
does not hold, and Theorem 4 implies that we must take £ = 3/4 to get an
Einstein metric (which by Theorem 1 will be a multiple of the Bergman
metric).

Now we compute the Leve-Civita connection by (13). Explictly for
U=ujri+ uyjry+ usr; + wry + usx + ugjx + z,z € Z,
V=ovjr + v jr, + 3+ 04, +vsx +vgjx + 2,2 € Z,

we find v
2V, V = (Quyvy + usvs + ugog + <z, z'Y)jr,
+ (2tugv, — usvs + ugvg)jry/t
+ (“2uy0, + ugvs — usvg + <z, jz' D),
+ (-2tu v, + usvg + ugvs)r,/t
+ (—usv, + usv, — U3V — ULy — UgDy — UyDE)X
+ (~ugv, — ugv, + uyvs — usv, + U35 + Usvs)jx
-0,z + uyjz’ + vyjz.
Fort=3/4, U= —jr, — jr, + jx, V. =3r, + 2r, + 6x, we find
2V,V = 6r, + 8r, — 5x, 2V, U = jry +%jr, + 2jx,
2V, U = 12r, — 5x, 2V V = 54jr, — 40jr, + 36jx,
[U,V]=3r —2r, 2ViunV = 18jr; — §jr,. +6jx,
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and 4{R(U, V)V, U) = 23. Thus the sectional curvature through U and ¥V is
positive in the Bergman metric. However, a very nasty but elementary
calculation shows that for # = 1 and arbitrary U, V

A& R(U, MV, U>
= — (U05 — U, + U 05 — U5V, + Ug — UL, + U305 — Usvs)”
—(uyvs — Usv; + U — ULy — UaDs + UsV; — UsVg + ug0s)*
— Quyv, — 2u,v, + ugds — usvg)
—|uz’ — v,z — usjz’ + vyjzft — |usz’ — vsz — ugjz’ + vgjzf?
—4{<z,j2'> +1Qu0; — 2u30, + ugos — u506)}2 <0

Thus we have a deformation, through S-invariant Kdhler metrics, from the
Bergman metric to a metric with only nonpositive sectional curvatures.
Again, it would be interesting to know the full isometry group of this new
metric.
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